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Rules of thumb for determining adequate sample size 
(N) are known to be of limited use in achieving an 

acceptable likelihood for desirable empirical outcomes 
(e.g., model convergence, statistical precision, statistical 
power) for a particular application of confirmatory fac-
tor analysis (CFA) with real data (Marsh, Hau, Balla, & 
Grayson, 1998). Common rules of thumb for determining 
adequate N for a particular application of CFA include, 
but are not limited to: N ≥ 200, ratio of N to the number 
of variables in a model (p), N/p ≥ 10; the ratio of N to the 
number of model parameters (q), N/q ≥ 5; and an inverse 
relationship between construct reliability and adequate 
N. Even when model-data assumptions are made that 

are rarely observed in practice and simulated data are 
analyzed, the performance of these rules of thumb has 
limited the ability of methodologists to offer definitive 
guidelines for adequate N across the myriad of model-data 
conditions observed in practice (Gagné & Hancock, 2006; 
Jackson 2001, 2003). The core problem with these rules 
of thumb is that adequate N for CFA depends on many 
factors that typically vary across any two studies using real 
data and inexact theoretical models (e.g., distribution of 
variables, reliability of indictors, size of the model, degree 
of model misspecification). These factors can be directly 
modeled using Monte Carlo methods.

“Monte Carlo methods use random processes to esti-
mate mathematical or physical quantities, to study distribu-
tions of random variables, to study and compare statistical 
procedures, and to study complex systems” (Gentle, 2005, 
pp. 1264–1265). Suppose that responses to a set of items 
are viewed as fallible reflective indicators of continuous 
latent variables within a CFA model (see Figure 1 for an 
application from exercise and sport). A population model 
for the indicators could be specified (see “Design Stage: 
Conceptualizing the Experiment” in the Method section 
for a worked example) and, using Monte Carlo methods, 
random samples of a particular size could be repeatedly 
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drawn from the population distribution (see “Generating 
Data Stage: Performing the Experiment” in the Method 
section for a worked example). Parameters of interest 
could be estimated in each random sample, and these 
could be combined to form an empirically generated 
sampling distribution for each parameter of interest, with 
the results summarized across replications (see Results 
section for a worked example). Monte Carlo methods, 
then, can be thought of as flexible experimental tools 
that can be used to artificially create (and hence study) 
theoretical (and hence unobserved) sampling distribu-
tions. The generality of this approach has allowed for two 
types of application: in studies of statistical methods and 
in data analysis (Gentle, 2003). This study fits within the 
second type of application. From this point forward the 
expression Monte Carlo methods is used when referring 
to the methodology in general, regardless of the type of 
application within which the methodology is applied. 

Monte Carlo studies of statistical methods are used to 
advance statistical theory by testing the ability of particular 
quantitative methods to recover given population values 
under various conditions. As summarized by Bandalos 
(2006), the performance of structural equation model-
ing has often been investigated by manipulating various 
independent variables, including model type (e.g., CFA 
vs. latent variable path model), model size (e.g., number 
of observed variables), model complexity (e.g., number 
of parameters estimated), parameter values, sample size, 

level of nonnormality, and estimation method. Typical 
outcomes include characteristics of parameter estimates 
(e.g., bias and efficiency), relative standard error bias, and 
model-data fit indexes (e.g., h2, root mean square error 
of approximation [RMSEA]). Because the primary goal 
of Monte Carlo studies of statistical methods is to advance 
statistical theory, and because only so many conditions 
can be manipulated in any one study, some conditions 
that may rarely be observed in practice are sometimes 
assumed (e.g., the population model is known, the data 
are continuous, all pattern coefficients are equal and 
large). Imposing such assumptions may result in findings 
of limited applicability to researchers who apply quantita-
tive methods to real data (MacCallum, 2003). MacCallum 
argued that the models used in practice (i.e., theoretical 
model), at best, only approximate a more complex reality 
(i.e., population model) and that studies that integrate a 
reasonable degree of misspecification, via Monte Carlo 
methods in particular, may be more useful to researchers 
who apply quantitative methods to real data. 

Monte Carlo methods can be used in data analysis 
(e.g., validity studies) to decide on N and to estimate 
power (π) for a particular application of quantitative meth-
ods (Muthén & Muthén, 2002). Specifically, two applied 
questions, “What N do I need to achieve a particular π 
level?” and “How much π will I have with a fixed N?” can be 
investigated. Few conditions may be manipulated because 
the primary goal of using Monte Carlo methods within a 
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Figure 1. Population and theoretical measurement model for the Coaching Efficacy Scale II–High School Teams. The two 
bolded paths and the two bolded variances are fixed to = 0 in the theoretical model.
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 validity study is to improve the methodological approach 
within a particular study (e.g., providing a context-specific 
and empirically based rationale for how the necessary N 
for a desired level of π was determined) where the primary 
focus is on construct validity issues (e.g., evaluating, with 
a sufficient level of π, empirical evidence for a theoreti-
cally based a priori factor structure of a latent construct). 
The contribution of using Monte Carlo methods within 
a validity study, then, is toward improved application of a 
particular quantitative methodology within a substantive 
area and not to statistical theory. 

A definition of π provided by Cohen (1988) is the 
probability of rejecting a truly false null hypothesis, H0. A 
commonly used desired level of π is .80. Determining N 
for a CFA model based on a desired level of π is typically 
more useful than relying on commonly used rules of 
thumb, because the N needed for a particular application 
is influenced by many factors that can be directly modeled 
with Monte Carlo methods (Muthén & Muthén, 2002). 

The conditions manipulated in the instructional pa-
per by Muthén and Muthén (2002), in relation to a CFA 
model with continuous indicators, were the nonnormal-
ity of indicators and missing data. The CFA model itself 
consisted of two continuous latent variables (with equal 
variances) with five continuous indicators each (each 
of which had a .80 pattern coefficient). The focus was 
on answering the two applied questions in the previous 
paragraph in regard to a .25 correlation between the 
latent variables (i.e., the parameter of interest). Other 
model parameters, such as pattern coefficients, were not 
specified as parameters of interest. 

A key assumption of Muthén and Muthén (2002) 
was that the population model and the theoretical 
model were identical. Thus the two applied questions 
were answered under the scenario where the theoretical 
model is exactly correct—a condition rarely, if ever, met 
in practice (MacCallum, 2003). Adopting this assumption, 
however, allowed for certain empirical criteria to be met 
before investigating the two applied questions regard-
ing N and π. One criterion was that parameter estimate 
and standard error estimate bias did not exceed |10%|. 
A second criterion was that standard error estimate bias 
for the parameter of interest did not exceed |5%|. Bias is 
a systematic difference between a sample estimate and 
the relevant population value. A third criterion was that 
coverage remained between .91 and .98. Coverage is the 
proportion of replications for which the 95% confidence 
interval contains the parameter value. After meeting 
these three conditions, the two applied questions were 
explored. For reasons that will be detailed in the Methods 
section, this strategy will be altered in this study due to the 
inclusion of a level of model misspecification commonly 
observed in exercise and sport.

An informal review of volume 79 of Research Quarterly 
for Exercise and Sport (RQES) by the lead author suggested 

it is common for at least one CFA model to appear in a 
validity study. Some observed trends (exceptions exist) 
across these papers include single population models; 
many observed variables and multiple latent variables; fix-
ing a number of pattern coefficients to satisfy theoretical 
identification requirements; ordinal data; evidence for 
approximate model-data fit (e.g., RMSEA ≤ .05) and 
against exact model-data fit (i.e., a statistically significant 
c2 value); variable pattern coefficients, factor variances, 
and covariances; a stronger focus on the pattern coef-
ficient matrix, L, and the off-diagonal elements of the 
factor covariance matrix, y, than on the measurement 
error covariance matrix, Q; and few multidimensional 
items and/or covariance between measurement errors. 
Rarely was an a priori plan for N, for a desired level of π, 
communicated. Rarely was an estimate of π, for a fixed 
N, communicated. 

Muthén and Muthén (2002) did not provide an 
example of CFA models with ordinal data. Ordered 
categorical data (e.g., Likert-type scale) are common in 
exercise science and are nonnormal by definition due to 
the discrete nature of the metric (Muthén, 1984). Nor-
mal theory (NT) estimators (i.e., those most commonly 
used in structural equation modeling) assume that the 
data follow a conditional multivariate normal (MVN) 
distribution in the population. As reviewed by Finney and 
DiStefano (2006), violating the assumption of MVN with 
categorical data can produce untrustworthy results (e.g., 
inflated indices of model-data misfit, negatively biased 
parameter estimates, and negatively biased standard er-
rors). The probability of observing untrustworthy results 
when categorical data are modeled with a NT estimator 
depends strongly on the degree of nonnormality and the 
number of ordered response options (e.g., DiStefano, 
2002; Dolan, 1994; Muthén & Kaplan, 1985). In cases 
where the number of response options is less than five, 
Finney and DiStefano suggest using categorical variable 
methodology (CVM) with weighted least squares mean- 
and variance-adjusted estimation (WLSMV; Muthén, 
1993). Modeling ordinal data under CVM, instead of 
as normal and continuous (even with a correction for 
nonnormality), can correct for attenuation in parameter 
estimates that may result due to the coarseness of the data.

The WLSMV estimator is similar to, but less compu-
tationally demanding than, the asymptotically distribu-
tion-free (ADF; Browne, 1984) estimator. The WLSMV 
estimator has generally outperformed (e.g., convergence 
to a proper solution) the ADF estimator under model-
data conditions commonly observed in practice (e.g., 
Beauducel & Herzberg, 2006; Flora & Curran, 2004). The 
WLSMV estimator for categorical data also has generally 
outperformed (e.g., smaller bias in parameter estimates) 
parceling approaches for categorical items (Bandalos, 
2008). While evidence for the WLSMV estimator is ac-
cumulating, this relatively new estimator has yet to be 
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studied extensively in Monte Carlo studies of statistical 
methods. Further, we are unaware of any published 
work using Monte Carlo methods in data analysis under 
WLSMV estimation.

The primary purpose of this study was to demonstrate 
how Monte Carlo methods can be used in a validity study 
to make decisions about N for a desired level of π, and, to 
estimate π for a fixed N under a CFA model with model-
data conditions commonly encountered in exercise and 
sport. Two particular model-data conditions of special 
importance in this study are model misspecification and 
ordinal data modeled under CVM with WLSMV estima-
tion. Because the purpose is pursued by way of demon-
stration with the Coaching Efficacy Scale II–High School 
Teams (CES II–HST), related sample size recommenda-
tions are provided. 

Method

We adopted a nine-step procedure proposed by Pax-
ton, Curran, Bollen, Kirby, and Chen (2001). The steps are 
conceptualized as occurring in three stages: design stage, 
generating-the-data stage, and interpreting results stage.

Design Stage: Conceptualizing the Experiment

Step 1: Research Questions. The two a priori research 
questions are:

1. 	 What is the smallest N necessary to achieve at least .80 
π for each parameter of interest?

2. 	 Given a particular N, what is the π estimate for each 
parameter of interest? 

The first question can be viewed as a design issue ad-
dressed before data collection. The second question can 
be viewed as a postdata-collection issue that may provide 
a useful context for subsequent results. Consistent with 
the lead author’s review of RQES, parameters of interest 
are all the nonzero elements within L and the unique off-
diagonal elements within y. Consistent with both MacCal-
lum (2003) and the lead author’s review of RQES, the two 
questions will be investigated when the theoretical model 
only approximates the population model. 

The research questions are investigated in relation 
to a measurement model for the CES II–HST (Myers, 
Feltz, Chase, Reckase, & Hancock, 2008) to provide a 
demonstration. Development of the CES II–HST was 
based on previous research (e.g., Feltz, Chase, Moritz, & 
Sullivan, 1999) and relevant theory (e.g., Feltz & Chase, 
1998; Feltz, Short, & Sullivan, 2008). The measurement 
model for the CES II–HST posits that five dimensions of 
coaching efficacy covary and influence responses to the 
items. Motivation is measured by four items and is defined 

as the confidence that coaches have in their ability to affect 
the psychological mood and psychological skills of their 
athletes. Game strategy is measured by four items and is 
defined as the confidence coaches have in their ability to 
lead during competition. Technique is measured by four 
items and is defined as the confidence coaches have in 
their ability to use her or his instructional and diagnostic 
skills during practices. Character building is measured 
by three items and is defined as the confidence coaches 
have in their ability to positively influence the character 
development of athletes through sport. Physical condi-
tioning is measured with three items and is defined as 
the confidence coaches have in their ability to prepare 
athletes physically for participation in her or his sport.

Items within the CES II–HST are rated on an ordered 
three- or four-category scale, which is consistent with rel-
evant psychometric research (Myers, Feltz, & Wolfe, 2008; 
Myers, Wolfe, & Feltz, 2005). A three-category structure is 
specified in this study. The measurement model for the 
CES II–HST hypothesizes that, for each item, a coach’s 
true location on a continuous latent response variate 
(y*) directly influences the category selected. Muthén 
and Muthén (2002) did not provide an example of CFA 
models with ordinal data. 

The estimation method used is WLSMV (Muthén, 
1993). Under WLSMV estimation, degrees of freedom typ-
ically are estimated, not fixed, for a particular model, and 
derivation of the confidence interval for an RMSEA point 
estimate is unknown (Muthén et al., 1997). It is noted 
that in Mplus Version 6 (Muthén & Muthén, 1998–2010), 
degrees of freedom under WLSMV estimation can now be 
computed in a more familiar way for a particular model 
(i.e., the difference between the number of parameters 
estimated in the unrestricted model and the number of 
parameters estimated in the restricted model). Details of 
this advance, along with a simulation study that shows a 
negligible difference in type I error rate between the two 
approaches outlined in this paragraph, are provided by 
Asparouhov and Muthén (2010). 

Step 2a: Derive a Theoretical Model. The theoretical 
model is depicted in Figure 1 (after fixing to 0 the two 
bolded paths and the two bolded covariances). The theo-
retical model exhibits approximate fit to data from Myers 
et al. (2008): 2

Rc (78) = 115, p = .004, RMSEA = .024, com-
parative fit index (CFI) = .992, and Tucker-Lewis Index 
(TLI) = .997. Providing evidence for at least close model 
fit should occur prior to determining π for parameter 
estimates within a model (Hancock, 2006). 

Step 2b: Derive a Population Model. A population model 
is generated based on post hoc theorizing and modifica-
tion indices from results of fitting the theoretical model to 
the data from Myers et al. (2008). Two pattern coefficients 
that were originally fixed to zero, lt4*,GS and lp1*,T, were 
freely estimated. The content of t4 (“instruct all of the 
different positional groups of your athletes on appropri-
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 ate technique during practice”) led us to postulate that 
responses to this item could indicate game strategy efficacy 
(because a coach must lead the entire team during compe-
tition) in addition to technique efficacy. The content of p1 
(“prepare an appropriate plan for your athletes’ off-season 
physical conditioning”) led us to propose that responses 
to this item could indicate technique efficacy (because the 
item implies both instructional and diagnostic skills) in 
addition to physical conditioning efficacy. Two measure-
ment error covariances that were originally fixed to zero, 
θtl*,t3* and θg3*,c3*, were freely estimated. The content of t1 
(“teach athletes the complex technical skills of your sport 
during practice”) and t3 (“teach athletes appropriate 
basic technique during practice”) led us to hypothesize 
that the similar wording of these items could produce a 
nonzero covariance between the residuals of these items. 
The content of g3 (“make effective personnel substitu-
tions during competition”) and c3 (“effectively promote 
good sportsmanship in your athletes”) led us to propose 
a nonzero covariance between the residuals of these items 
because a personnel substitution during competition is 
occasionally done for the purpose of promoting good 
sportsmanship.

The four post hoc modifications are made to the 
theoretical model (see bolded arrows in Figure 1) to 
generate a population model that is consistent with the 
Myers et al. (2008) data: 2

Rc (76) = 91, p = .116, RMSEA = 
.016, CFI = .997, and TLI = .999. These modifications can 
be conceptualized as errors of omission in the theoretical 
model and likely represent common types of misspecifica-
tions in CFA models. While all modifications are statisti-
cally significant, the magnitude of each within the popu-
lation model (the two standardized pattern coefficients 
are 0.14 and 0.10, and the two correlations are .26 and 
.25) is often classified as practically irrelevant (Thurstone, 
1930). Omitting practically irrelevant parameters from a 
theoretical model is consistent with a long held belief that 
psychological models used in practice typically cannot be 
made to be exactly correct (MacCallum, 2003).

Step 3: Design Experiment. Conditions commonly en-
countered in measurement in exercise and sport, such as 
model misspecification, a range of parameter estimates, 
and ordinal data will be built into the code and will be 
reviewed in subsequent steps. An iterative approach is 
taken to investigate the first question. The first run will 
specify N = 799 consistent with Myers et al. (2008) to 
provide a baseline. Results will be examined as follows. 
With respect to the first question, the primary focus will 
be: Was the false H0 that a particular parameter of inter-
est, θi, was equal to 0, H0: θi = 0 rejected 80% of the time? 
Samples of different sizes will be drawn until the smallest 
N necessary to achieve π ≥ .80 for each θi is determined. A 
relevant minimal sample size of N ≥ 200 is adopted (Flora 
& Curran, 2004) for the first question. With respect to 
the second question, two sets of sample size, common N 

(300, 400, 500) and small N (50 and 100), will be selected, 
and π will be estimated for each θi. Small N conditions are 
included because the use of structural equation modeling 
with small N, although inadvisable in general, is observed 
in practice (Hau & Marsh, 2004). In each run, except for 
small N runs, 10,000 datasets will be generated, which is 
consistent with Muthén and Muthén (2002). In small N 
runs only 500 datasets will be generated because it is rea-
sonable to hypothesize that these runs will be practically 
invalid (to be defined in Step 8) due to the combination of 
small N, model complexity, a small number of categories, 
and model misspecification (Boomsma, 1985). 

Due to the complexity of estimation, the exact effects 
of misspecification on subsequent parameter estimates, 
and hence bias and coverage, are often unknowable a 
priori (Kaplan, 1988). For this reason, the strategy pro-
posed by Muthén and Muthén (2002) is altered. Answers 
to the two applied questions are sought first while bias 
and coverage are monitored as secondary considerations. 
Parameter estimate bias is calculated consistent with Ban-
dalos (2006, p. 401):
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where îjθ is the jth sample estimate of the ith population 
parameter θi , and nr is the number of replications. Pa-
rameter estimate bias will be reported as a percentage, 
and values ≥ |10%| will be noted. Standard error estimate 
bias is calculated consistent with Bandalos (2006, p. 401):
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where is the estimated standard error of îθ for the 
jth replication, and ( )îSE θ is an estimate of the population 
standard error of 

îθ . Standard error estimate bias will be 
reported as a percentage and values > | 5%| will be noted. 
Coverage also will be reported as a percentage and values 
outside of 91–98% will be noted.   

Step 4: Choosing Values of Population Parameters. The 
population values used to generate the data will be taken 
from the results of imposing the population model on the 
Myers et al. (2008) data described in Step 2 (see Table 1). 
The variability across the practically relevant elements of 
L, .78 to 1.56, and y, .38 to .77, for the correlations and 
0.33 to 0.69 for the variances, is consistent with the lead 
author’s review of RQES. Standardized pattern coefficients 
are not provided in Table 1, but sufficient information 
for deriving these coefficients is provided (i.e., each un-
standardized coefficient and the variance of each latent 
variable). For example, let lm2*,M represent the population 
coefficient from motivation efficacy to m2*. Standardized 
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lm2*,M is given by lm2*,M*(SDM/SDm2*). Therefore, the stan-
dardized value of lm2*,M  = 1.02 * (.69/1) = 0.71. Practically 
relevant standardized pattern coefficients ranged from 
0.57 to 0.89. 

Step 5: Choosing Software. Analyses will be performed in 
Mplus 6.0 (Muthén & Muthén, 1998–2010). An annotated 
input file, where “!” and italicized text signify annotation, 
is available on request from the lead author and online 
at http://nicholas-myers.blogspot.com/. Further descrip-
tions of key sections of the input file are provided. 

Misspecification is created in two ways in this study. 
The first way is by specifying a population model under the 
Model Population section that differs from the theoretical 
model specified under the Model section (i.e., model er-
ror). The second way is by using sample data from Myers 
et al. (2008), where N was not extremely large, to generate 
estimates of the population values (i.e., sampling error). 
Including both model error and sampling error under 
a Monte Carlo approach is consistent with MacCallum 
and Tucker (1991). Average RMSEA across replications, 

,RMSEA will be used to quantify the degree of misspecifi-
cation (Bandalos, 2006). 

Ordinal data are created by categorizing the data, 
which is drawn from a multivariate normal distribution. 
The population threshold values, which categorize the 
continuous data, are derived based on the Myers et al. 
(2008) data. These threshold values are z values deter-
mined by (a) the proportion of observations in or below 
a particular category and (b) the area under a standard 
normal curve. For example, there were 82 observations in 
the first category of g1. This proportion of observations 
relative to the total possible, 799, was .103. The threshold 
value between the first category and the second category of 
g1 (i.e., g1$1) is the z value that corresponds to cumulative 
area .103, which is -1.267. The population distribution for 
each item, then, was the same as observed in Myers et al. 

Generating Data Stage: Performing the Experiment

Step 6: Executing the Simulations. The simulations are 
executed as described previously with additional data 
management issues noted in Step 8. Note that the only 
change to the code needed for each new N was the re-
quested number of observations. 

Table 1. Population/start values for the pattern coefficient matrix, L, and the covariance matrix, Y  				  
									       
Item			  Population values for L	 			   Start values for L	
	 M	 GS	 T	 CB	 PC	 M	 GS	 T	 CB	 PC
													           
m1	 1.00	 0.00	 0.00	 0.00	 0.00	 1.00	 0.00	 0.00	 0.00	 0.00
m2	 1.02	 0.00	 0.00	 0.00	 0.00	 1.02	 0.00	 0.00	 0.00	 0.00
m3	 1.08	 0.00	 0.00	 0.00	 0.00	 1.08	 0.00	 0.00	 0.00	 0.00	
m4	 1.08	 0.00	 0.00	 0.00	 0.00	 1.08	 0.00	 0.00	 0.00	 0.00	
g1	 0.00	 1.00	 0.00	 0.00	 0.00	 0.00	 1.00	 0.00	 0.00	 0.00
g2	 0.00	 1.03	 0.00	 0.00	 0.00	 0.00	 1.03	 0.00	 0.00	 0.00
g3	 0.00	 0.91	 0.00	 0.00	 0.00	 0.00	 0.92	 0.00	 0.00	 0.00
g4	 0.00	 1.05	 0.00	 0.00	 0.00	 0.00	 1.05	 0.00	 0.00	 0.00
t1	 0.00	 0.00	 1.00	 0.00	 0.00	 0.00	 0.00	 1.00	 0.00	 0.00
t2	 0.00	 0.00	 0.94	 0.00	 0.00	 0.00	 0.00	 0.90	 0.00	 0.00
t3	 0.00	 0.00	 1.07	 0.00	 0.00	 0.00	 0.00	 1.06	 0.00	 0.00
t4	 0.00	 0.18	 0.78	 0.00	 0.00	 0.00	 0.00	 0.92	 0.00	 0.00
c1	 0.00	 0.00	 0.00	 1.00	 0.00	 0.00	 0.00	 0.00	 1.00	 0.00
c2	 0.00	 0.00	 0.00	 1.05	 0.00	 0.00	 0.00	 0.00	 1.05	 0.00
c3	 0.00	 0.00	 0.00	 1.07	 0.00	 0.00	 0.00	 0.00	 1.08	 0.00
p1	 0.00	 0.00	 0.12	 0.00	 1.00	 0.00	 0.00	 0.00	 0.00	 1.00
p2	 0.00	 0.00	 0.00	 0.00	 1.43	 0.00	 0.00	 0.00	 0.00	 1.22
p3	 0.00	 0.00	 0.00	 0.00	 1.56	 0.00	 0.00	 0.00	 0.00	 1.33

			  Population values for Y	 			   Start values for Y	
	 M	 GS	 T	 CB	 PC	 M	 GS	 T	 CB	 PC

M	 0.48	 0.73	 0.56	 0.73	 0.55	 0.48	 0.73	 0.56	 0.73	 0.56
GS	 0.40	 0.62	 0.77	 0.51	 0.54	 0.40	 0.62	 0.78	 0.52	 0.55
T	 0.32	 0.51	 0.69	 0.42	 0.53	 0.33	 0.52	 0.73	 0.42	 0.55
CB	 0.39	 0.31	 0.27	 0.60	 0.38	 0.39	 0.32	 0.28	 0.59	 0.38
PC	 0.22	 0.25	 0.25	 0.17	 0.33	 0.26	 0.29	 0.31	 0.20	 0.44	 

Note. M = motivation; GS = game strategy; T = technique; CB = character building; PC = physical conditioning; for each Y, stan-
dardized values are provided above the main diagonal. 
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 Step 7: File Storage. All of the files will be saved in the 
location from which the input file is run. A different folder 
was created for each run. An advantage to saving all of the 
generated datasets is that some datasets may need to be 
discarded, and a particular run repeated, for reasons that 
will be described below.

Step 8: Troubleshooting. The data collection plan is 
sometimes not exactly observed in the generation of the 
data, and the data analysis plan is sometimes not exactly 
observed in the analysis of the generated data (Bandalos, 
2006). Two types of problems will be observed in the Re-
sults section. The first problem, absence of at least one 
observation in a particular category, is regarded as a data 
generation problem. Such a dataset is unusable, because 
a requirement of the analysis is that a constant number of 
thresholds are estimable within any particular item. The 
second type of problem, nonconvergent solutions and 
improper solutions (e.g., a negative variance), is regarded 
as a data analytic problem. Either of these solution types 
will result in the elimination of the relevant dataset. The 
number of unusable and eliminated datasets will be re-
ported. A run will be considered practically invalid if the 
number of unusable and eliminated datasets is greater 
than 5% of the requested replications. This heuristic is 
adopted because having adequate power is not particularly 
useful if, with a given dataset, there is a nontrivial chance 
that the theoretical model either will not be estimable or 
will converge to an improper solution. 

Runs with less than 5% of unusable and eliminated 
datasets will be repeated after problematic datasets are 
removed. Repeating a run after removing problematic 
datasets is sometimes referred to as an external Monte 
Carlo analysis. An annotated input file is available on 
request to the lead author and online at http://nicholas-
myers.blogspot.com/. The context for this run is given in 
the Results section.

Interpreting Results Stage: Findings from the 
Experiment

Step 9: Summarizing Results. For each run (e.g., 10,000 
replications for the N = 300 run), Mplus integrates the rel-
evant information across replications into a single output 
file. All of the information for the Results discussed in this 
step is provided under the Model Results section of the 
output file provided by Mplus. Key parameter-level results 
from the baseline run will be depicted in Table 2. The 
first column will specify parameters of interest (e.g., lml, M 
denotes the path from latent motivation to latent response 
variate m1*; yM,GS denotes the covariance between latent 
motivation and latent game strategy; etc.). The second 
column, ˆ,π provides the percentage of replications in 
which H0:θi = 0 is rejected. The third column, θi, provides 
the population value for the ith parameter. The fourth 
column, ˆ ,iθ  provides the average estimate for θ  across 

replications. The fifth column, ( )ˆ %iBias θ , provides the 
relevant parameter bias value as a percentage. The sixth 
column, ( )ˆ ,iSE θ provides an estimate of the relevant popu-
lation standard error (i.e., SD of îθ across replications). 
The seventh column, � ( )ˆ ,iSE θ  provides the average SE 
estimate for îθ across replications. The eighth column,

� ( )( )ˆ %,iBias SE θ  provides the relevant standard error 
bias value as a percentage. The ninth column, Cover95%CI, 
provides the percentage of replications in which the 95% 
confidence interval (CI) includes the population value. 
Model-level information will be summarized in the text. 

Results

Question 1

For the baseline run (N = 799), all 10,000 gener-
ated datasets are usable. Each dataset converges to a 
proper solution when fit to the theoretical model and

.018.RMSEA =  Key parameter-level results from the 
baseline run are depicted in Table 2. Power is 100% for 
each H0:θi = 0. Parameter estimate bias exceeds |10%| 
for 3 of 13 pattern coefficients, Bias ( t4*,T = 19.1%), Bias 
(( )4*,

ˆ 19.1% ,t TBias λ =p2*,PC = -14.7%), Bias (( )4*,
ˆ 19.1% ,t TBias λ =p2*,PC = -15.1%), and for 4 of 10 

latent variable covariances, Bias (( ),ˆ 23.1% ,T PCBias ψ =M,PC = 18.1%), Bias (( ),ˆ 23.1% ,T PCBias ψ =
GS,PC = 19.4%), Bias (( ),ˆ 23.1% ,T PCBias ψ =

T,PC = 23.1%), Bias (( ),ˆ 23.1% ,T PCBias ψ =CB,PC = 18.2%).
 Standard error estimate bias never exceeds |5%|. Coverage 

is less than 91% for 4 of 13 pattern coefficients, Cover95%CI 
(( )4*,

ˆ 19.1% ,t TBias λ =t2*,T = 86.0%), Cover95%CI(( )4*,
ˆ 19.1% ,t TBias λ =t4*,T = 1.6%), Cover95%CI(( )4*,

ˆ 19.1% ,t TBias λ =t2*,PC 
= 25.9%), Cover95%CI(( )4*,

ˆ 19.1% ,t TBias λ =p3*,PC = 23.2%), and for 4 of 10 latent 
variable covariances, Cover95%CI(( ),ˆ 23.1% ,T PCBias ψ =M,PC = 66.0%), Cover95%CI   
(( ),ˆ 23.1% ,T PCBias ψ =GS,PC = 57.8%), Cover95%CI(( ),ˆ 23.1% ,T PCBias ψ =T,PC = 45.8%), Cover95%CI(( ),ˆ 23.1% ,T PCBias ψ =CB,PC 
= 80.5%).

 
A partial output file with annotation is avail-

able on request to the lead author and online at http://
nicholas-myers.blogspot.com/.

For the final run (N = 200), 9,979 of the 10,000 gener-
ated datasets are usable. A small number of usable datas-
ets, 163 (or 1.6%), converge to an improper solution when 
fit to the theoretical model and are eliminated. The final 
run is repeated with 9,816 usable datasets (or 98.2%) in 
an external Monte Carlo analysis. Each dataset converges 
to a proper solution when fit to the theoretical model and

.019.RMSEA =  Key parameter-level results are similar to 
the baseline run (see Table 2). Power is ≥ 98.4% for each 
H0:θi = 0. Parameter estimate bias exceeds |10%| for the 
same three pattern coefficients, Bias (( )4*,

ˆ 19.1% ,t TBias λ =t4*,T = 19.5%), Bias 
(( )4*,

ˆ 19.1% ,t TBias λ =p2*,PC = -14.1%), Bias (( )4*,
ˆ 19.1% ,t TBias λ =p3*,PC = -14.8%), and the same four 

latent variable covariances, Bias (( ),ˆ 23.1% ,T PCBias ψ =M,PC = 20.0%), Bias (( ),ˆ 23.1% ,T PCBias ψ =
GS,PC = 21.4%), Bias (( ),ˆ 23.1% ,T PCBias ψ =T,PC = 25.1%), Bias (( ),ˆ 23.1% ,T PCBias ψ =CB,PC = 20.2%), as 
in the baseline run. Standard error estimate bias exceeds 
|5%| for only Bias (SE (( )4*,

ˆ 19.1% ,t TBias λ =t4*,T = -6.6%)). Coverage is less than 
91% for three of the same pattern coefficients, Cover95%CI(

( )4*,
ˆ 19.1% ,t TBias λ =t4*,T = 41.4%), Cover95%CI (( )4*,

ˆ 19.1% ,t TBias λ =p2*,PC = 63.2%), Cover95%CI(( )4*,
ˆ 19.1% ,t TBias λ =p3*,PC 

= 60.3%), and for the same four latent variable covari-

( )4*,
ˆ 19.1% ,t TBias λ =
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ances, Cover95%CI(( ),ˆ 23.1% ,T PCBias ψ =M,PC = 87.1%), Cover95%CI(( ),ˆ 23.1% ,T PCBias ψ =GS,PC = 83.4%), 
Cover95%CI(( ),ˆ 23.1% ,T PCBias ψ =T,PC = 78.9%), Cover95%CI(( ),ˆ 23.1% ,T PCBias ψ =CB,PC = 90.8%), as in 
the baseline run.

The finding for Question 1 is that a relatively small 
sample (N = 200) provides ample π to reject each H0:θi = 0. 
Problematic bias values and coverage values, however, are 
observed at both the small sample and baseline sample. 
Thus, while there is ample π, a few absolute ( )îBias θ values 
are relatively large, and the 95% CI around a few îθ too 
frequently exclude θi.  

Question 2

Results from the common N (300, 400, and 500) runs 
closely follow results from the baseline run and the final 
run. The number of usable datasets range from to 9,998 
(N = 300) to 10,000 (N = 400 and 500). The number of 
usable datasets that converge to an improper solution 
when fit to the theoretical model, range from 19 (N = 
300) to 1 (N = 500) and are eliminated. For each run 

.017.RMSEA =  Power is ≥ 99.9% for each H0:θi = 0. In 
each of the three runs, parameter estimate bias exceeds 
|10%| for the same three pattern coefficients at approxi-

mately the same percentages, and for the same four latent 
variable covariances at approximately the same percent-
ages, as in the baseline run (see Table 2) and the final run. 
Standard error estimate bias exceeds |5%| for only Bias 
(SE(( )4*,

ˆ 19.1% ,t TBias λ =t4*,T = -5.2%)) and only when N = 300. Coverage is less 
than 91% for the same three or four pattern coefficients 
at approximately the same percentages, and for the same 
four latent variable covariances at approximately the same 
percentages as in the baseline run and the final run.

 
The 

small N runs (N = 50 and 100) were considered practically 
invalid because 361 (or 72.2%) and 89 (or 17.8%) of the 
generated datasets are problematic. 

The answer to Question 2 with common N is similar 
to the answer to Question 1. Commonly used sample 
sizes provide ample π to reject each H0:θi = 0. Similarly 
problematic bias values and coverage values, however, 
continue to be observed at each sample size. 

A Post Hoc Question

Given the repeated observation of a few problematic 
bias values and a few low coverage values, a post hoc ques-
tion is: To what degree might the relatively minor model 

Table 2. Key parameter-level results from baseline run (N = 799) 
 							     
Parameter	 π (%)	 θi	 θi	 Bias (θi) (%) 	 SE (θi)	 SE (θi)	 Bias (SE (θi)) (%)	 Cover95%CI (%)

λm1*,M	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λm2*,M	 100.0	 1.02	 1.02	 0.3	 0.059	 0.059	 0.0	 95.2 
λm3*,M	 100.0	 1.08	 1.08	 0.2	 0.060	 0.059	 -1.0	 95.2
λm4*,M	 100.0	 1.08	 1.09	 0.2	 0.060	 0.059	 -0.8	 94.8
λg1*,GS	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λg2*,GS	 100.0	 1.03	 1.03	 0.1	 0.041	 0.040	 -1.5	 94.9
λg3*,GS	 100.0	 0.91	 0.92	 0.9	 0.042	 0.042	 0.0	 94.9
λg4*,GS	 100.0	 1.05	 1.04	 0.0	 0.041	 0.041	 -1.0	 94.9
λt1*,T	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λt2*,T	 100.0	 0.94	 0.91	 -3.2	 0.036	 0.036	 -1.1	 86.0
λt3*,T	 100.0	 1.07	 1.06	 -0.2	 0.034	 0.036	 4.7	 95.7
λt4*,T	 100.0	 0.78	 0.93	 19.1	 0.037	 0.036	 -3.5	 1.6
λc1*,CB	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λc2*,CB	 100.0	 1.05	 1.06	 0.2	 0.061	 0.061	 -0.2	 95.2
λc3*,CB	 100.0	 1.07	 1.08	 1.4	 0.063	 0.063	 -0.5	 95.1
λp1*,PC	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λp2*,PC	 100.0	 1.43	 1.22	 -14.7	 0.079	 0.078	 -1.6	 25.9
λp3*,PC	 100.0	 1.56	 1.33	 -15.1	 0.086	 0.084	 -1.8	 23.2
ψM,GS	 100.0	 0.40	 0.40	 0.1	 0.028	 0.027	 -2.2	 94.4
ψM,T	 100.0	 0.32	 0.33	 3.0	 0.028	 0.027	 -0.4	 93.6
ψM,CB	 100.0	 0.39	 0.39	 -0.1	 0.029	 0.029	 0.0	 95.0
ψM,PC	 100.0	 0.22	 0.26	 18.1	 0.026	 0.025	 -1.2	 66.0
ψGS,T	 100.0	 0.51	 0.52	 2.7	 0.027	 0.027	 -0.4	 91.4
ψGS,CB	 100.0	 0.31	 0.32	 2.3	 0.030	 0.029	 -1.0	 94.1
ψGS,PC	 100.0	 0.25	 0.29	 19.4	 0.028	 0.027	 -2.9	 57.8
ψT,CB	 100.0	 0.27	 0.28	 2.4	 0.031	 0.031	 -1.0	 94.2
ψT,PC	 100.0	 0.25	 0.31	 23.1	 0.029	 0.028	 -3.8	 45.8
ψCB,PC	 100.0	 0.17	 0.20	 18.2	 0.027	 0.027	 -1.1	 80.5

Note. SE = standard error.

v v v v vv
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 misspecifications be responsible for these problems? This 
question is interesting because evidence for some degree 
of misspecification is generally consistent with applied 
measurement (MacCallum, 2003). All of the runs previ-
ously described are repeated with the exception that the 
theoretical model is slightly altered to mirror the popula-
tion model exactly (i.e., the population model is assumed 
known). Simply, the four practically irrelevant parameters 
described previously (and fixed to = 0 in the theoretical 
model) are now freely estimated in the theoretical model. 
From this point forward, for simplicity, the set of practically 
irrelevant parameter estimates is denoted 

îθj, whereas the 
set of parameter estimates of interest is denoted 

îθ . 
The final run (N = 200) is now considered practically 

invalid because 702 (or 7.2%) of the generated datasets 
are problematic. Results from the baseline (N = 799) and 
common N (300, 400, and 500) runs without model mis-
specification are generally very similar to each other and 
differ from the parallel runs with model misspecification 

in similar ways. Therefore, results from only the baseline 
run (N = 799) are reported in detail. This run is selected 
because the results with model misspecification were previ-
ously reported both in the text and in Table 2. Power for 
each H0:θi = 0 across runs, ≥ 99.8%, is similar to parallel 
previous runs with model misspecification.

For the baseline run (N = 799), each dataset con-
verges to a proper solution when fit to the theoretical 
model without misspecification and .005.RMSEA =  Key 
parameter-level results from the baseline run are depicted 
in Table 3. Parameter estimate bias never exceeds |10%| 
within îθ (the maximum value is .7%) and ranges from 
-2.5 to -1.1 within

îθj. Standard error estimate bias never 
exceeds |5%| within îθ (the maximum absolute value is 
3.1%) and ranges from -3.3% to -0.3% within 

îθj. Cover-
age is never less than 91% within either îθ  or 

îθj. Power is 
100% for each H0:θi = 0 and ranges from 44.5% to 75.4% 
for each H0:θi = 0. Power for each H0:θi = 0 varies across 
runs (e.g., ranges from 20.3% to 36.2% when N = 300). 

Table 3. Key parameter-level results from the baseline run (N = 799) without model misspecification 
						    
Parameter	 π (%)	 θi	 θi	 Bias (θi) (%) 	 SE (θi)	 SE (θi)	 Bias (SE (θi)) (%)	 Cover95%CI (%)	

λm1*,M	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λm2*,M	 100.0	 1.02	 1.02	 0.3	 0.059	 0.059	 0.0	 95.2
λm3*,M	 100.0	 1.08	 1.08	 0.2	 0.060	 0.059	 -0.8	 95.2
λm4*,M	 100.0	 1.08	 1.09	 0.2	 0.060	 0.059	 -0.8	 94.8
λg1*,GS	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λg2*,GS	 100.0	 1.03	 1.03	 0.1	 0.041	 0.040	 -1.7	 94.8
λg3*,GS	 100.0	 0.91	 0.91	 0.1	 0.042	 0.042	 0.2	 95.2
λg4*,GS	 100.0	 1.05	 1.04	 0.0	 0.041	 0.041	 -1.2	 94.9
λt4*,GS	 45.3	 0.18	 0.18	 -1.9	 0.105	 0.102	 -3.3	 95.1
λt1*,T	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λt2*,T	 100.0	 0.94	 0.94	 0.1	 0.045	 0.045	 -0.2	 95.3
λt3*,T	 100.0	 1.07	 1.07	 0.2	 0.037	 0.037	 -0.3	 95.1
λt4*,T	 100.0	 0.78	 0.79	 0.7	 0.106	 0.102	 -3.1	 94.8
λp1*,T	 47.1	 0.12	 0.11	 -1.1	 0.062	 0.061	 -1.0	 94.8
λc1*,CB	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λc2*,CB	 100.0	 1.05	 1.06	 0.2	 0.061	 0.061	 -0.7	 95.2
λc3*,CB	 100.0	 1.07	 1.07	 0.2	 0.062	 0.062	 -0.2	 95.0
λp1*,PC	 —	 1.00	 1.00	 —	 0.000	 0.000	 —	 —
λp2*,PC	 100.0	 1.43	 1.43	 0.4	 0.129	 0.127	 -1.5	 94.8
λp3*,PC	 100.0	 1.56	 1.57	 0.5	 0.148	 0.145	 -2.4	 94.3
ψM,GS	 100.0	 0.40	 0.40	 0.3	 0.028	 0.027	 -2.2	 94.4
ψM,T	 100.0	 0.32	 0.32	 0.2	 0.028	 0.028	 -1.1	 94.6
ψM,CB	 100.0	 0.39	 0.39	 0.3	 0.029	 0.029	 0.3	 95.0
ψM,PC	 100.0	 0.22	 0.22	 0.5	 0.027	 0.027	 -0.7	 94.7
ψGS,T	 100.0	 0.51	 0.51	 0.2	 0.028	 0.028	 -1.4	 94.5
ψGS,CB	 100.0	 0.31	 0.31	 0.5	 0.030	 0.029	 -1.7	 94.7
ψGS,PC	 100.0	 0.25	 0.25	 0.5	 0.030	 0.029	 -2.3	 94.5
ψT,CB	 100.0	 0.27	 0.27	 0.5	 0.031	 0.031	 -1.3	 94.6
ψT,PC	 100.0	 0.25	 0.25	 0.4	 0.031	 0.031	 -2.2	 94.4
ψCB,PC	 100.0	 0.17	 0.17	 0.7	 0.026	 0.026	 -1.1	 94.6
t1*,t3*	 44.5	 0.07	 0.07	 -1.5	 0.037	 0.037	 -0.5	 94.9
c3*,g3*	 75.4	 0.10	 0.10	 -2.5	 0.036	 0.036	 0.3	 95.1 	 	
 	 	 	 	 	 	      
Note. SE = standard error.

v v v v v v
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The findings related to Question 3 suggest that the 
relatively small degree of model misspecification appears 
to be responsible for the problematic bias values and for 
the low coverage values previously observed. This find-
ing is consistent with Monte Carlo studies of statistical 
methods that manipulated model misspecification (e.g., 
Kaplan, 1988). Thus, for correctly specified models across 
all practically valid runs (i.e., N ≥ 300), there is ample 
power for each H0:θi = 0. ( )îBias θ

 
values are within gener-

ally accepted levels, and the 95% CI around each
îθ almost 

always includes θi. Thus, it appears that while introducing 
model misspecification via Monte Carlo methods in a 
data analytic situation has the advantage of more closely 
reflecting practice, it has the disadvantage of introducing 
additional difficulties (MacCallum, 2003).

Discussion

Monte Carlo methods have long been used to ad-
vance statistical theory. There have been several recent 
calls to use Monte Carlo methods as a tool to improve 
applications of quantitative methods in substantive re-
search (e.g., MacCallum, 2003; Muthén & Muthén, 2002). 
The primary purpose of this study is to demonstrate how 
Monte Carlo methods can be used to decide on sample 
size and to estimate power for a CFA model under model-
data conditions commonly encountered in measurement 
in exercise and sport. Because the purpose is pursued 
by way of demonstration with the CES II–HST, related 
sample size recommendations are provided: N ≥ 200 for 
the theoretical model, N ≥ 300 for the population model. 

The two questions, “What sample size do I need to 
achieve a particular level of power?” and “How much 
power will I have with a fixed sample size?” commonly 
arise in validity studies. Annotated Mplus code for inves-
tigating these questions in relation to the measurement 
model for the CES II–HST is available upon request to the 
lead author and online at http://nicholas-myers.blogspot.
com/. Combining the two annotated input files with Fig-
ure 1 provides an example of how to translate models into 
code. The code can be altered in relatively minor ways for 
other CFA models common to exercise and sport. The 
authors of this study focus on these questions in relation to 
the pattern coefficients and the covariances between the 
latent variables (to maintain a reasonable focus) but the 
code does not need to be altered if the focus expands to 
include the variances of the latent variables. The findings 
for the first two questions in relation to the CES II–HST 
are: as little as 200 (for the theoretical model) or 300 (for 
the population model), and, at least 99.9% for sample 
sizes of 300, 400, and 500. 

An important assumption embedded in the code is 
that the theoretical model only approximates the popula-

tion model. The first two questions, then, are investigated 
under the common scenario that there is evidence against 
exact model-data fit. An apparent consequence of the mis-
specification in this case is that, over repeated sampling, 
a few parameter estimates are biased and the confidence 
interval around a parameter estimate too frequently ex-
cludes the population value in a few instances. While this 
result is consistent with statistical theory (Kaplan, 1988), 
it also serves as a reminder that a level of misfit that may 
be regarded as trivial in practice may have troubling 
effects on parameters of conceptual interest. Thus, it is 
likely that other validity studies where there is evidence 
against exact fit experience similar problems. Incorporat-
ing Monte Carlo methods in validity studies may provide 
information on where these effects may be occurring 
and encourage sustained efforts toward generating closer 
approximations of population models. Such efforts must 
be balanced against model generation based only on 
modification indices (MacCallum, 1986). As MacCallum 
demonstrated, a post hoc specification search based only 
on empirical information (e.g., modification indexes) 
frequently results in the acceptance of a post hoc theoreti-
cal model that may be consistent with a particular dataset 
but, more importantly, may be inconsistent with the true 
model (i.e., population model). 

Primary limits of this study include the use of a single 
(and not extremely large) dataset to generate a popula-
tion model and population values, the exclusion of other 
conditions commonly found in practice, a sample size 
recommendation that happens to converge on a com-
mon rule of thumb, and the focus on only a particular 
CFA model. The use of the Myers et al. data (2008) and 
post hoc theorizing to generate a population model and 
population values can be viewed as a limitation of this 
study in the sense that, because the observed dataset was 
not extremely large and was treated as the population, 
sampling error was likely nontrivial. The population 
model and the population values proposed, therefore, 
are unlikely to be exactly correct and should be viewed 
as only reasonable hypotheses. We view this limitation as 
tolerable (and necessary as the population model and 
population values are unlikely to ever be truly known) 
given the paucity of research with the CES II–HST and 
the intended broader contribution of the study. Other 
conditions commonly encountered in practice, but not 
modeled in this study, include missing data and continu-
ous data. Muthén and Muthén (2002) provide examples 
of how to impose both conditions. The sample size recom-
mendations for the CES II–HST forwarded in this study 
(i.e., N ≥ 200 for the theoretical model, N ≥ 300 for the 
population model) happen to converge at, or near to, a 
common rule of thumb (i.e., N ≥ 200). This convergence 
should not be viewed as either general support for this 
rule of thumb or as evidence against the usefulness of the 
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 Monte Carlo approach described in this study. Implement-
ing the Monte Carlo approach advocated in this study 
will always provide more information (e.g., bias) than 
will unexplored adherence to the N ≥ 200 rule of thumb. 
As such, we advocate that in research situations similar to 
those described in this study, researchers in exercise and 
sport should strongly consider implementing the Monte 
Carlo approach described in this study to make decisions 
about N and/or to estimate π (as opposed to relying on 
related rules of thumb). Last, this study focuses on only 
a particular CFA model, which limits the breadth of the 
contribution of the study. 
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